Math 10A with Professor Stankova
Quiz 2; Wednesday, 9/6/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE If $f(x)=\sqrt{x}$, then the domain of $f^{-1}(x)$ is all real numbers.
2. True FALSE If f, g are functions such that $\lim _{x \rightarrow 0} f(x)=L$ and g is continuous at $x=L$, then we must have $\lim _{x \rightarrow 0} g(f(x))=g(f(0))$.

Show your work and justify your answers.
3. (10 points) Let $f(t)=\frac{\sqrt{t+3}-3}{t-6}$.
(a) (2 points) What is the domain of f ?

Solution: The domain is when $t+3 \geq 0$ and $t \neq 6$. So the domain is $D=$ $[-3, \infty) \cap\{t: t \neq 6\}=[-3,6) \cup(6, \infty)=\{t: t \geq-3$ and $t \neq 6\}$.
(b) (3 points) Find $\lim _{t \rightarrow 1} f(t)$.

Solution: Since f is continuous at $t=1$, which we know since it is a combination of polynomials, the limit is just $f(1)=\frac{\sqrt{1+3}-3}{1-6}=\frac{\sqrt{4}-3}{-5}=\frac{1}{5}$.
(c) (5 points) Find $\lim _{t \rightarrow 6} f(t)$.

Solution: We have that

$$
\begin{gathered}
\lim _{t \rightarrow 6} \frac{\sqrt{t+3}-3}{t-6}=\lim _{t \rightarrow 6} \frac{\sqrt{t+3}-3}{t-6} \cdot \frac{\sqrt{t+3}+3}{\sqrt{t+3}+3} \\
=\lim _{t \rightarrow 6} \frac{t+3-9}{(t-6)(\sqrt{t+3}+3)}=\lim _{t \rightarrow 6} \frac{1}{\sqrt{t+3}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{6} .
\end{gathered}
$$

